| M | 3 | CS | E | |---|---|----|---| | | | | _ | [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu. **Question Paper Code: 2011** #### M.E./M.Tech. DEGREE END-SEMESTER EXAMINATIONS – FEB. 2023 First Semester Computer Science and Engineering #### P19MA101 – APPLIED PROBABILITY & STATISTICS (Common to Information Technology) (Regulation 2019) Time: Three Hours Knowledge Levels Maximum: 100 Marks K5 - Evaluating Answer ALL the question K3 – Applying K1 – Remembering | | 0 | 5 117.5 | | | | | |-------|---|---|---------------------------------|----------|--------|--------| | (KL) | | K2 – Understanding | K4 – Analyzing | K6 - Cre | ating | | | | | PAR | T – A | (10 x | 2 = 20 | Marks) | | Q.No. | | Questions | | Marks | KL | co | | 1. | If $V(x) = 4$, fin | d $V(3x + 8)$, where X is | a random variable. | 2 | K2 | CO1 | | 2. | | Binomial distribution is 20 of the distribution | and S.D is 4. Determine | 2 | K1 | CO1 | | 3. | Show that the | | | 2 | K2 | CO2 | | | $f(x,y) = \begin{cases} \frac{2}{5}(2x) \\ \text{and } Y \end{cases}$ | $(x + 3y), 0 \le x \le 1, 0 \le y$
0, otherwise | $y \le 1$ is a joint p.d.f of X | | | | | 4. | Find the value of $f(x, y) = 0$ other | (1 - y) in $0 < x, y < 1$ and sity function | 2 | K2 | CO2 | | | 5. | State any three of | characteristics of Estimate | ors. | 2 | K1 | CO3 | | 6. | State Rao-Black | well theorem. | | 2 | K1 | CO3 | | 7. | State Type I and | l Type II Error. | | 2 | K1 | CO4 | | 8. | Define χ^2 test. | | | 2 | K1 | CO4 | | 9. | Find the Eigen v | values of a Matrix $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ | $\binom{2}{-2}$ | 2 | K1 | CO5 | | 10. | | atic form into matrix $3x_1^2$ | _ | 2 | K2 | CO5 | #### PART – B $(5 \times 16 = 80 \text{ Marks})$ Q.No. **Ouestions** Marks KL. 11. a) A discrete random variable X has the following probability distribution 5 8 6 P(X=x)3a 5a 7a 9a 11a 13a 15a 17a 16 A K3 CO₁ i. Find the value a. ii. Find P(X < 3), P(0 < X < 3), $P(X \ge 3)$ iii. Find the distribution function of X(15)(OR) b) i. A continuous random variable X that can assume any value 8 **K**3 between x=2 and x=5 has a density function given by f(x) = k(1+x). Find P[X < 4]. CO₁ Find the MGF of a Poisson random variable and hence find its 8 K3 mean and variance. 12. a) The two lines of regression are 8 **K**3 8x - 10y + 66 = 040x - 18y - 214 = 0CO₂ the variance of x is 9.i) find the mean values of x and y and correlation coefficient between x and y. ii. Compute the coefficient of correlation between X and Y using 8 K3 the following data: X 2 3 4 5 6 Y 2 5 3 7 (OR) Given the joint p.d.f of (X,Y) as b) K5 $f(x,y) = \begin{cases} 8xy, 0 < x < y < 1 \\ 0, otherwise \end{cases}$ Find the marginal and conditional p.d.f of X and Y. Are X and Y CO₂ independent? ii. The regression equations are 3x + 2y = 26, 6x + y = 31. 8 **K3** Find the correlation coefficient between X and Y. 13. a) In a random sampling from normal population $N(\mu, \sigma^2)$, find K3 the Maximum Liklihood estimator for μ when σ^2 is known. CO₃ ii. Find the Maximum Likely hood estimate for the parameter 8 **K**3 λ of a poisson distribution of a sample size 'n' and find its (OR) variance. | b) | i. | Explain | Characteristics | of Estimators. | |----|----|---------|-----------------|----------------| |----|----|---------|-----------------|----------------| | | 1 | |-----|---| | | | | ii. | Compute the Regression line of y on y the following data: | | 11. | Compute the Regression line of y on x the following data: | | 8 | K3 | |---|----| | | | CO₃ CO₄ | | X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|---|---|----|----|----|----|----|----|----| | 7 | Y | 9 | 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 | Also obtain an estimate of y which should correspond on the average to x=6.2 b) A Group of 10 rats fed on diet A and another group of 8 rats fed on diet, recorded the following increase in weight | Diet A | 5 | 6 | 8 | 1 | 12 | 4 | 3 | 9 | 6. | 10 | |--------|---|---|---|---|----|---|---|---|----|----| | Diet B | 2 | 3 | 6 | 8 | 10 | 1 | 2 | 8 | | | Find if the variances are significantly different. $$A = \begin{pmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{pmatrix}$$ (OR) b) i. $$\Sigma = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix}$$ find $V^{1/2}$ and ρ ii. Consider the random vector $$X' = \{X_1, X_2\}$$. The discrete random variable X_1 have the following Probability function x_1 : -1 0 1 $P_1(X_1)$: 0.3 0.3 0.4 and X₂ have the following probability function: $$x_2$$: 0 1 $P_2(X_2)$: 0.8 0.2 | Reg.No.: | | |----------|--| |----------|--| [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu. # **Question Paper Code: 5033** #### M.E. / M.Tech. DEGREE END-SEMESTER EXAMINATIONS – FEB. 2023 First Semester Computer Science and Engineering #### P19CS101 / P19IT101 - ADVANCED ALGORITHMS (Common to Information Technology) (Regulation 2019) Time: Three Hours Maximum: 100 Marks Answer ALL the questions | Knowledge Levels | K1 – Remembering | K3 – Applying | K5 - Evaluating | |------------------|--------------------|----------------|-----------------| | (KL) | K2 – Understanding | K4 – Analyzing | K6 - Creating | # PART – A | | | $(10 \times 2 = 2)$ | 20 M | arks) | |-------|--|---------------------|------------|-------| | Q.No. | Questions | Marks | KL | CO | | 1. | Differentiate between Omega and Big-O notation. | 2 | K1 | CO1 | | 2. | Define Time and Space Complexity. | 2 | K 1 | CO1 | | 3. | Why Greedy Method cannot be applied to Matrix Chain Multiplication, justify? | 2 | K3 | CO2 | | 4. | What is Huffman Codes and which algorithmic method best suits to derive Huffman Codes? | 2 | K2 | CO2 | | 5. | Define Minimum Spanning Trees. Give an example. | 2 | K1 | CO3 | | 6. | What is a sparse graph? Give an example. | 2 | K1 | CO3 | | 7. | What is Linear Programming? Give an example. | 2 | K1 | CO4 | | 8. | Define Multi-threaded algorithms. Illustrate with an example. | 2 | K1 | CO4 | | 9. | Explain NP-Completeness with an example. | 2 | K2 | CO5 | | 10. | How can string matching can be performed? | 2 | K2 | CO5 | # PART – B | | | PARI – B | | | | |-----|-----|--|--------|--------|--------| | | | $(5 \times 13 =$ | | |) | | _ | No. | · · | Marks | | CO | | 11. | a) | Explain the role of algorithms in computing and discuss any randomized algorithm. | 13 | K3 | CO1 | | | | (OR) | | | | | | b) | Discuss the elements of the Divide and Conquer strategy and discuss the algorithmic complexity for Quicksort. | 13 | K3 | CO1 | | 12. | a) | Discuss the elements of the Greedy strategy and explain the algorithm for Activity-selection problem. | 13 | K3 | CO2 | | | | (OR) | | | | | | b) | Discuss Rod-Cutting and give an algorithm to solve it along with
the derivation of the time complexity. | 13 | K3 | CO2 | | 13. | a) | Discuss and differentiate between Kruskal and Prims Algorithm along with its complexity. | 13 | K3 | CO3 | | | | (OR) | | | | | | b) | Give an algorithm for single source shortest path and discuss its complexity. | 13 | K3 | CO3 | | 14. | a) | Explain an algorithm for Multithreaded matrix multiplication and also compare and discuss its complexity with single-threaded | 13 | K3 | CO4 | | | | algorithm. | | | | | | | (OR) | | | | | | b) | Explain Least-Squares approximation problem and its time complexity in detail. | 13 | K3 | CO4 | | 15. | a) | Discuss Rabin-Karp Algorithm and discuss its time complexity. | 13 | K2 | CO5 | | | | (OR) | | | | | | b) | Discuss Knuth-Morris-Pratt algorithm and discuss its time complexity. | 13 | K2 | CO5 | | | | PART – C | | | | | | | (1 x 15 = | = 15 M | (arks) | | | Q.N | No. | Questions | Mark | s K | L CO | | 16. | | What is All-Pairs-Shortest paths problem, derive an algorithm to solve the problem and discuss its complexity | | K | | | | | (OR) | | | | | | b) | Explain Merge-sort algorithm and improve it for multi-threaded Merge-sort algorithm and compare the algorithmic complexity for both. | | K | C5 CO4 | | | | | | | | | Reg.No.: | | | | | | |] | |----------|--|--|--|--|--|--|---| |----------|--|--|--|--|--|--|---| [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu. ## **Question Paper Code: 5034** ## M.E./M.Tech. DEGREE END-SEMESTER EXAMINATIONS – FEB. 2023 First Semester Computer Science and Engineering ## P19CS102 / P19IT102 - MACHINE LEARNING TECHNIQUES (Common to Information Technology) (Regulation 2019) Time: Three Hours Maximum: 100 Marks #### Answer ALL the questions | Knowledge Levels | K1 – Remembering | K3 – Applying | K5 - Evaluating | |------------------|--------------------|----------------|-----------------| | (KL) | K2 – Understanding | K4 – Analyzing | K6 - Creating | #### PART - A $(10 \times 2 = 20 \text{ Marks})$ Q.No. Questions Marks KL CO 1. Explain different types of Learning/Training models in ML? Give a real K2 CO₁ life example in each type. 2. Give 2 advantages and disadvantages of decision trees? 2 K1 CO₁ 3. What do you understand by the term curse of dimensionality? 2 K1 CO₂ 4. Explain the E and M step in the EM algorithm K1 CO₂ 5. Give the name of the function used for adding datasets in R? 2 K1 CO₃ 6. Explain how you can create a table in R without an external file? 2 K1 CO₃ 7. What is Markov Decision Process? K1 CO₄ 8. Give the difference between Off-Policy and On-Policy Learning? 2 K2 CO₄ 9. Give any non-linear activation function name and formulation. K1 CO₅ Explain the working of LSTM networks. 10. K1 CO₅ # PART – B | | | IAKI-B | | | | |-----|-----|---|-----------|----------|-----| | | | | B = 65 M | , | | | Q. | No. | Questions | Marks | KL | CO | | 11. | a) | What is the role of hyperparameter C in SVM? | 13 | K2 | CO1 | | | | (OR) | | | | | | b) | Illustrate decision tree classification with example. | 13 | K3 | CO1 | | 12. | a) | Elaborate on K-nearest neighbor algorithm with suitable example | 13 | K2 | CO2 | | | | (OR) | | | | | | b) | Cluster the following eight points (with (x, y) representing locations) | 13 | K5 | CO2 | | | | into three clusters: | | | | | | | A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), | | | | | | | A8(4, 9) | | | | | | | Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). | | | | | | | The distance function between two points $a = (x1, y1)$ and $b = (x2, y1)$ | | | | | | | y2) is defined as- | | | | | | | P(a, b) = x2 - x1 + y2 - y1 | | | | | | | Use K-Means Algorithm to find the three cluster centers after the | | | | | | | second iteration. | | | | | 13. | a) | Let's say you need to scale data that has many outliers, how do you perform this operation in Scikit-Learn? (OR) | 13 | K1
K2 | CO3 | | | b) | Elaborate on Markov random fields in probabilistic graphical models. | 13 | K2 | CO3 | | 14. | a) | State and explain about Q-Learning algorithm in reinforcement | 13 | K2 | CO4 | | | | learning. | | | | | | | (OR) | | | | | | b) | Draw a state diagram for a basic Reinforcement Learning problem on
a real-life example. | 13 | K3 | CO4 | | 15. | a) | Explain the working principle in convolutional neural network. | 13 | K2 | CO5 | | | | (OR) | | | | | | b) | Explain the concept of multilabel classification with examples. | 13 | K2 | CO5 | # PART – C $(1 \times 15 = 15 \text{ Marks})$ Q.No. # Questions Marks KL CO CO1 For the below data, apply decision tree and find the information gain. | Day | Weather | Temperature | Humidity | Wind | Play? | |-----|---------|-------------|----------|--------|-------| | 1, | Sunny | Hot | High | Weak | No | | 2. | Cloudy | Hot | High | Weak | Yes | | 3. | Sunny | Mild | Normal | Strong | Yes | | 4. | Cloudy | Mild | High | Strong | Yes | | 5. | Rainy | Mild | High | Strong | No | | 6. | Rainy | Cool | Normal | Strong | No | | 7. | Rainy | Mild | High | Weak | Yes | | 8, | Sunny | Hot | High | Strong | No | | 9. | Cloudy | Hot | Normal | Weak | Yes | | 10. | Rainy | Mild | High | Strong | Yes | (OR) b) Explain spectral clustering and differentiate with other clustering method. 15 15 K2 K5 CO₅ * | D M | | | |----------|--|--| | Reg.No.: | | | | | | | # VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu. **Question Paper Code: 5036** M.E. / M.Tech. DEGREE END-SEMESTER EXAMINATIONS – FEB. 2023 First Semester Computer Science and Engineering #### P19CSE05 / P19ITE05 - MINING MASSIVE DATASETS (Common to Information Technology) (Regulation 2019) Time: Three Hours Maximum: 100 Marks Answer ALL the questions | Knowledge Levels | K1 – Remembering | K3 – Applying | K5 – Evaluating | |------------------|--------------------|----------------|-----------------| | (KL) | K2 – Understanding | K4 – Analyzing | K6 – Creating | #### PART - A | | * | $(10 \times 2 =$ | = 20 Ma | arks) | |-------|---|------------------|---------|-------| | Q.No. | Questions | Marks | KL | CO | | 1. | What are the two types of data mining? | 2 | K1 | CO1 | | 2. | Define MapReduce. | 2 | K1 | CO1 | | 3. | Mention the process of similarity search. | 2 | K2 | CO2 | | 4. | How is a nearest neighbor approach used? | 2 | K3 | CO2 | | 5. | What is data stream analysis? | 2 | K4 | CO3 | | 6. | How do you identify a spammy link? | 2 | K2 | CO3 | | 7. | List the role of community in a social network graph. | 2 | K3 | CO4 | | 8. | How do you count triangles in a graph? | 2 | K4 | CO4 | | 9. | What are the 3 types of online advertising? | 2 | K5 | CO5 | | 10. | Give some examples of recommendation systems. | 2 | K6 | CO5 | #### PART – B $(5 \times 13 = 65 \text{ Marks})$ | Q.N | lo. | | | Qu | estions | | | | | | Marks | KL | CO | |-----|-----|---------------|-----|-----------|---------|-----|-----|--------|-------|----|-------|------------|-----| | 11. | a) | With diagrams | and | examples, | explain | the | Map | Reduce | style | of | 13 | K 1 | CO1 | | | | computing. | | | | | | | | | | | | (OR) | | b) | i, | Discuss in brief about the statistical limits on Data mining. | 7 | K2 | CO1 | |------|------|-------|--|---------|-------|-----| | | | ii. | Design a MapReduce algorithm to take a very large file of integers and produce as output, the count of the number of distinct integers in the input. | 6 | K3 | CO1 | | 12 | . a) | i. | What do you mean by shingling of documents? Explain. | 7 | K2 | CO2 | | | | ii. | What is the connection between Minhashing and Jaccard Similarity? | 6 | K3 | CO2 | | | | | (OR) | | | | | | b) | | are Distance Measures? What are their types? Highlight the at features of each with an example. | 13 | K3 | CO2 | | 13. | a) | i. | How is filtering done on streams? Explain with an example. | 7 | K4 | CO3 | | | | ii. | Explain the working of Flajolet-Martin Algorithm. | 6 | K3 | CO3 | | | | | (OR) | | | | | | b) | i. | With a block diagram, explain the working of a data stream model. | 7 | K3 | CO3 | | | | ii. | Explain the working of Alon-Matias-Szegedy Algorithm for Second Moments. | 6 | K3 | CO3 | | 14. | a) | i. | What is betweeness? How to use the betweeness score to find communities in a graph? | 7 | K4 | CO4 | | | | ii. | How does clustering of social network graphs work? Explain with an example. | 6 | K5 | CO4 | | | | | (OR) | | | | | | b) | | appropriate examples, explain the various issues related to ing data in a stream. | 13 | K3 | CO4 | | 15. | a) | i. | Explain the CUR decomposition method with an example. | 7 | K5 | CO5 | | | | ii. | What is Adwords problem? Explain. | 6 | K4 | CO5 | | | | | (OR) | | | | | | b) | Write | short notes on | | | | | | | i. | Issues related to advertising on web | 7 | K5 | CO5 | | | | ii. | Collaborative filtering | 6 | K4 | CO5 | | | | | PART – C | | | | | | | | (1×15) | = 15 Ma | ırks) | | | Q.Ne | 0. | | Questions | Marks | KL | CO | | 16. | | | a page rank? With an example, explain an efficient method to the page rank for a large graph. (OR) | 15 | K4 | CO4 | | | | | e Recommendation systems? What are their types? Explain the g of each, listing their advantages and disadvantages. | 15 | K5 | CO5 | | Reg.No.: | | | | | |----------|--|--|--|--| |----------|--|--|--|--| [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu. #### **Question Paper Code: 5035** #### M.E. / M.Tech. DEGREE END-SEMESTER EXAMINATIONS – FEB. 2023 First Semester Computer Science and Engineering #### P19CS103 – SECURITY PRINCIPLES AND PRACTICES (Regulation 2019) Time: Three Hours Maximum: 100 Marks #### Answer ALL the questions | Knowledge Levels | K1 – Remembering | K3 – Applying | K5 – Evaluating | |------------------|--------------------|----------------|-----------------| | (KL) | K2 – Understanding | K4 – Analyzing | K6 – Creating | #### PART - A | | $(10 \times 2 = 20 \text{ Marks})$ | | | | | | |-------|---|-------|----|-----|--|--| | Q.No. | Questions | Marks | KL | CO | | | | | | | | | | | | 1,. | Compute GCD(2735, 572). | 2 | K3 | CO1 | | | | 2. | How indirect counting helps in solving combinatorial problems? | 2 | K2 | CO1 | | | | - 3. | Compare stream cipher with block cipher with example. | 2 | K1 | CO2 | | | | 4. | Convert the Given Text "CRYPTOGRAPHY" into cipher text using Rail fence Technique. | 2 | K3 | CO2 | | | | 5. | Define symmetric and asymmetric encryption. | 2 | K2 | CO3 | | | | 6. | List four general characteristics of schema for the distribution of the public key. | - 2 | K1 | CO3 | | | | 7. | What is the role of Ticket Granting Server in inter realm operations of Kerberos? | 2 | K2 | CO4 | | | | 8. | Why the leading two octets of message digest are stored in PGP message along with encrypted message digest? | 2 | K3 | CO4 | | | | 9. | What are the common techniques used to protect a password file? | 2 | K2 | CO5 | | | | 10. | What is application level gateway? | 2 | K1 | CO5 | | | | | | PART - B | | | |------------------------------|--|--|----------------|-----------| | (;) | Marks) | $(5 \times 13 = 6)$ | | | | KL CO
K3 CO1 | | Questions Illustrate a communication game to illustrate any security principles. | .No.
a) | Q.
11. | | X3 CO1 | J K. | | a) | 11, | | | | (OR) | | | | K2 CO1 | 3 K2 | Explain the important concepts of number theory for mathematical foundations in security. | b) | | | K2 CO2 | 3 K | i. Briefly explain the design principles of block cipher. | a) | 12. | | K2 | 5 K | ii. Discuss in detail block cipher modes of operation. | | | | | | (OR) | | | | K3 CO2 | 3 K. | i. Draw the general structure of DES and explain the encryption decryption process. | b) | | | K3 | 5 K | ii. Mention the strengths and weakness of DES algorithm. | | | | K3 CO3 | 3 K. | Discuss the Diffie-Hellman key exchange algorithm with its merits | a) | 13. | | | | and demerits. (OR) | | | | K2 CO3 | 3 K2 | Explain public key cryptography and when it is preferred and give a | b) | | | | | suitable example. | 0) | | | K3 CO4 | } K. | · | a) | 14. | | K2 | 5 K' | | | | | | | (OR) | | | | K2 CO4 | 3 K | Discuss about authentication protocols for internet security. | b) | | | K2 CO5 | 3 K2 | Elaborate on different ways of protecting programs and data. | a) | 15. | | | | (OR) | | | | | | List and explain the following with examples | h) | | | K3 CO5 | 8 K | | U) | | | | | ii. Computer crime | | | | | | | | | | | | PART – C | | | | .) | Marks) | $(1 \times 15 = 1)$ | | | | | rks KI | | | Q.N | | K3 CO2 | 5 K3 | | a) | 16. | | | 7 | V1 0 0 1 | | | | | ~ | | | | | | | | | | | | | | | | | 70 000 | | | 1. | | | ζ3 CO2 | | diagram. | b) - | | | K4 CO1 | 5 K ² | ii. Find 1113 mod 53 using modular exponentiation. | | | | K2 C
K2 C
K3 C
K3 C | 5 K2 3 K2 3 K2 8 K2 Marks) rks K1 5 K3 | i. What is Kerberos? Explain how it provides authenticated services. ii. Elaborate on SSL protocol stack. (OR) Discuss about authentication protocols for internet security. Elaborate on different ways of protecting programs and data. (OR) List and explain the following with examples i. Software failures ii. Computer crime PART - C (1 x 15 = 1) Questions Encrypt the message "PAY" using hill cipher with the following key matrix and show the decryption to get original plain text. 17 17 5 K= 21 18 21 2 2 19 (OR) i. Explain key-distribution center with all aspects with neat diagram. | b)
a)
b) | 15. |